P P SAVANI UNIVERSITY

Fifth Semester of B. Tech. Examination November 2022

SEIT3032 Design & Analysis of Algorithms

29.11.2022, Tuesday

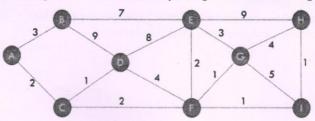
Time: 10:00 a.m. To 12:30 p.m.

Maximum Marks: 60

Instructions:

- 1. The question paper comprises of two sections.
- 2. Section I and II must be attempted in separate answer sheets.
- 3. Make suitable assumptions and draw neat figures wherever required.
- 4. Use of scientific calculator is allowed.

SECTION - I


					DECTION	-					
Q-1	Answer the fo	llowi	ng (Any F	ive)					[05]	CO	BTL
(i)	What is algorithm?								1	1	
(ii)	Dijkstra's algo	orithn	can be	used to f	ind short	est path	for negat	tive edge weigh	t	/2	2
	in the graph.	TRU	E/FALSE								
(iii)	Write Princip	le of o	ptimality	7.						2	1
(iv)	Define Big – Oh notation.								1	1	
(v)	What is the average case time complexity of sequential search?								4	1	
(vi)	Write basic ch	naract	eristics o	f divide a	nd conqu	er metho	od.		*	2	2
(vii)	List out any two problems that can be solved using greedy method.						•	2	1		
Q-2(a)	Explain worst case scenario of binary search algorithm with proper example.						[05]	2	4		
Q-2(b)	Illustrate the	steps	to con	struct m	inimum l	heap tree	e on the	following data	[05]	5	3
	8,5,9,7,2,1,6,3	,10									
	OR										
Q-2(a)	Apply merge :	sort o	n the foll	owing da	ta 8,5,9,7	,2,1,6,3,1	0.		[05]	5	3
Q-2(b)	Write algorith	ım for	quick so	rt and its	time con	nplexity f	or worst	case.	[05]	4	2
Q-3(a)	Explain job se	quen	cing prob	lem with	deadline	S.			[05]	3	2
Q-3(b)	Construct the	Huffn	nan code	for the fo	ollowing	data:			[05]	5	6
	Character	A	В	C	D	Е	F	G			
		-									
	Frequency	4	8	15	13	7	9	10			

4	8	15	13	7	9
	4	4 8	4 8 15	4 8 15 13	4 8 15 13 7

Encode DAA and BAG using Huffman encoding.

Q-3(a) Generate the actions of shortest paths for the given graph from vertex 1 to all [05] remaining vertices. $1 \rightarrow 2=20$, $2 \rightarrow 1=2$, $1 \rightarrow 3=15$, $2 \rightarrow 5=10$, $2 \rightarrow 6=30$, $3 \rightarrow 6=10$, $3 \rightarrow 4 = 4, 5 \rightarrow 4 = 15, 6 \rightarrow 4 = 4, 6 \rightarrow 5 = 10.$

Illustrate the steps to find Minimum cost spanning tree for the following graph: Q-3(b)

Q-4 Attempt any one. [05]

(i)	Explain Travelling salesman problem using dynamic programming method.		3	3
(ii)	Explain multi stage graph with proper example.		3	3
	SECTION - II			
Q - 1	MCQ/Short Question/Fill in the Blanks (Any Five)	[05]		
(i)	Define: Backtracking		1	1
(ii)	Hamiltonian path problem is?		1	1
	A. NP Problem			
	B. P Class Problem			
	C.NP- Complete Problem D. N Class Problem			
(iii)	Rabin Karp algorithm and naive pattern searching algorithm have the same		2	2
(111)	worst case time complexity.			
	A. True			
	B. False			
(iv)	The problem of placing n queens in a chessboard such that no two queens		1	2
	attack each other is called as?		1	
(v)	Define: State Space Tree		1	1
(vi)	Define: Branch and Bound Method		4	1
(vii)	How many unique colors will be required for proper vertex coloring of an		2	4
	empty graph having n vertices?			
	A. 0			
	B. 1			
	C. 2			
	D. n			
Q-2(a)	Explain N-queen Problem with the suitable example.	[05]	2	2
Q-2(b)	Draw the state space tree and identify all possible sets using Sum of Subset	[05]	3	6
	Problem for the following details:			
	Given Data: Array List {1,2,4,5,6} & Required Sum = {6}			
	OR			
Q-2(a)	Write algorithm of Graph Coloring Problem through suitable example	[05]	1	2
Q-2(b)	Apply Naïve string-matching algorithm to identify the given pattern through	[05]	3	3
	given data:			
	text T abcabaabcabac			
	pattern P a b a a			
Q-3(a)	Travelling Salesman Problem is NP Hard Problem. (Yes/NO) - Justify your	[05]	4	5
,	answer with example			
Q-3(b)	What do you mean by Finite Automata? How it can be work for string matching	[05]	2	2
,	algorithm?			
	OR			
Q-3(a)	Define: Approximation algorithm	[05]	1	1
Q-3(b)	Apply 0/1 Knapsack problem using branch & bound Techniques on given data:	[05]	3	3
(-)	Consider three items along with respective weights and value as			

	weight	value	value/weight
11	5	6	6/5 = 1.2
12	4	5	5/4 = 1.25
13	3	4	4/3 = 1.3

Consider: Knapsack Capacity W:7

Q - 4 Attempt any one. [05]

(i) Explain Hamiltonian Path with Example of any Real application. 4 6

(ii) What is the difference between 'Backtracking' and 'Branch & Bound' algorithm Techniques? 1 1

CO : Course Outcome Number

BTL : Blooms Taxonomy Level

Level of Bloom's Revised Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create